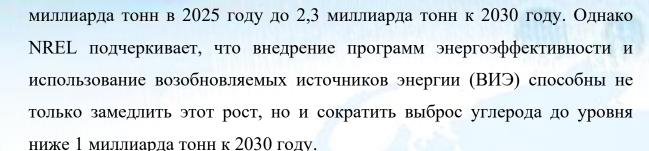


ОЦЕНКА ЭКОЛОГИЧЕСКИХ ЭФФЕКТОВ РЕАЛИЗАЦИИ КОНЦЕПЦИИ SMART GRID

Амурова Наталья Юрьевна

Ташкентский университет информационных технологий имени Мухаммада аль-Хорезми, Ташкент, Узбекистан amuryonok@list.ru


Аннотация: В статье рассматривается экологический эффект реализации концепции Smart Grid в контексте глобальных усилий по снижению углеродных выбросов и переходу на устойчивые энергетические системы. Внедрение технологий Smart Grid способствует значительному сокращению выбросов углерода, повышению энергоэффективности и интеграции возобновляемых источников энергии, а также снижению операционных затрат в энергетическом секторе. Применение данных технологий позволяет снизить затраты промышленных потребителей, повысить качество обслуживания и создать новые рабочие места.

Ключевые слова: Smart Grid, экологический эффект, углеродные эмиссии, энергоэффективность, возобновляемые энергетические источники, операционные издержки, энергетическая инфраструктура, интеграция энергетических систем.

Введение

В условиях глобальных усилий по борьбе с загрязнением окружающей среды и увеличением объемов выбросов парниковых газов, страны по всему миру активно внедряют экологически устойчивые технологии. Согласно данным Национальной лаборатории возобновляемой энергии США (NREL), компании сталкиваются с многочисленными трудностями при адаптации к изменениям в глобальной экологической среде. Прогнозируется, что выбросы углерода в США вырастут с 1,7

Основная часть

Экологические эффекты от внедрения технологий Smart Grid:

- **1. Уменьшение выбросов углерода -** технологии Smart Grid способствуют значительному снижению выбросов углерода. Основные механизмы достижения этого эффекта включают:
- управление спросом и нагрузкой, оптимизация использования электроэнергии и минимизация потребления дорогостоящей пиковой электроэнергии, которая вырабатывается менее эффективными энергоблоками;
- повышение энергоэффективности, реализация образовательных программ и адаптивных тарифных систем способствует более рациональному использованию энергии потребителями;
- снижение изменчивости возобновляемых источников энергии, интеграция и оптимизация источников энергии, таких как ветер и солнце, снижают колебания в их производительности;
- интеграция электромобилей и распределенных источников энергии, включение электромобилей и распределенных источников энергии в энергосистему способствует более равномерному распределению энергии и снижению зависимости от углеродоемких источников.

Согласно отчету Международного энергетического агентства (IEA), применение технологий Smart Grid может сократить выбросы углерода в среднем на 10-20% в долгосрочной перспективе благодаря улучшению управления потреблением энергии, более эффективному использованию возобновляемых источников и снижению потерь электроэнергии.

- **2.** Снижение операционных и эксплуатационных затрат в энергетическом секторе. Основные направления экономии включают:
- снижение частоты выездов на аварии и диагностику, автоматизированные системы позволяют оперативно устранять неисправности и минимизировать расходы на аварийные вызовы и диагностику;
- обслуживанию по переход к состоянию, использование технологий мониторинга в реальном времени позволяет проводить техническое обслуживание на основе фактического состояния оборудования, что снижает затраты ПО сравнению плановым обслуживанием;
- снижение риска перегрузки оборудования, оперативная информация о состоянии сетевых активов помогает предотвратить перегрузки и потенциальные поломки оборудования, особенно важных элементов, таких как трансформаторы. Использование умных датчиков может снизить затраты на обслуживание трансформаторов на 25-30%;
- оптимизация распределения электроэнергии, технологии Smart Grid могут сократить потери электроэнергии более чем на 30% за счет улучшения производительности электростанций и управления балансом энергосистемы.
- **3.** Снижение затрат промышленных потребителей, коммерческие и промышленные потребители также выигрывают от внедрения технологий Smart Grid. Примеры экономии включают:
- эффективность электродвигателей, высокоэффективные двигатели и приводы с регулированием скорости вращения могут значительно сократить потребление электроэнергии. Использование таких двигателей может сэкономить до 85 миллиардов кВтч в год;
- автоматизация ответных реакций на ценовые сигналы, приводы могут автоматически регулировать потребление энергии в ответ

на ценовые сигналы, что снижает затраты на электроэнергию и оказывает положительное влияние на общественные выгоды.

- **4. Повышение качества обслуживания бизнес-клиентов,** технологии Smart Grid способствуют улучшению качества обслуживания бизнес-клиентов за счет:
- автоматический мониторинг и техническое обслуживание, возможность автоматического мониторинга и активного технического обслуживания оборудования потребителей помогает достигать целей энергосбережения и сокращения выбросов углерода;
- прозрачность данных и рекомендации, двусторонняя коммуникация и усовершенствованные системы измерения позволяют энергетическим компаниям предоставлять рекомендации по оптимизации энергопотребления. По оценкам EPRI, это может привести к ежегодной экономии энергии в диапазоне от 2,2 до 8,8 миллиардов кВтч.

5. Влияние на рабочие места и экономическое развитие:

- создание новых рабочих мест, разработка, внедрение и обслуживание технологий Smart Grid создают новые рабочие места в таких областях, как инженерия, IT, аналитика данных и обслуживание энергетических систем. Это также стимулирует развитие новых стартапов и инновационных компаний;
- экономическое развитие, внедрение умных сетей способствует росту экономики за счет повышения эффективности и конкурентоспособности энергетического сектора. Оптимизация расходов на энергию и снижение потерь способствуют более стабильным ценам на электроэнергию и повышению экономической привлекательности для инвесторов.

Таблица 1.

Цепочка создания ценностей системы Smart Grid

Цепочка	Бизнес-эффект	Получатель	Получаемая	Выгоды
создания		ценности	ценность	

ценности				
Конечное	Полное	Потребители	1.	1. Возможность
потребление	удовлетворение	электрическ	Информация	оптимизации
- все	требований	ой энергии	по	управления
действия,	каждого из		индивидуаль	энергетикой.
предпринима	отдельно взятых		ному спросу	2. Повышение
емые	потребителей		И	доступности сети
потребителя			потреблению.	распределенного
ми, или			2.	генерирующего
место			Возможность	оборудования
клиента			повышения	
			пропускной	
			способности	
			участков сети	
Диспетчерск	1.	Диспетчеры	1.	1.
oe	Совершенствов		Управление	Оптимизированная
управление в	ание		потерями -	система
режиме	традиционных		определение	административного
реального	систем		места сбоя,	управления (OMS)
времени	измерений.		диагностичес	(DA, работающий c
	2. Повышение		кая	GIS, GPS,
	устойчивости		информация	мобильными
	системы		по	сообщениями).
	(способность		требованию.	2. Диспетчеры
	принять удар и		2.	уделяют внимание
	продолжать		Информация	только
	работу)		о состоянии	значительным
			оборудования	отклонениям в
			, включая	работе
			сведения о	самовосстанавлива
			ремонтах в	ющейся сети и
			режиме	тратят меньше
			реального	времени на
			времени.	устранение
			3.	проблем

			Балансировка	
			загрузки	
Эксплуатаци	1. Снижение	Менеджеры	1.	1. Фокус больше на
я активов -	издержек	по	Устойчивая и	анализе данных,
ежедневные	жизненного	управлению	достоверная	нежели на их
работы по	цикла актива.	активами,	информация	сборе.
обеспечению	2. Получение	операционн	о состоянии	2. Возможность
надежности	максимальной	ый и	активов.	утверждать
работы сети	ценности от	ремонтный	2. Сведения в	эффективность
	имеющихся	персонал	режиме	программ
	сетей и		реального	управления
	генерации		времени об	активами.
			окончании	3. Снижение
			устранения	уровня
			неисправност	технологического
			ей и	риска
			плановых	
			работ	
Создание	Управление	Трудовые	Статус	1. Выше
активов -	рабочей силой с	ресурсы	используемой	конструкторская
реконструкц	акцентом на	(внутренние	конфигураци	эффективность за
ия и новое	безопасность	И	и в режиме	счет более
строительств	работников и	подрядчики)	реального	простого дизайна.
о активов	потребителей		времени	2. Введение
				гарантий
				безопасности
				работы
Проектирова	1. Достижение	Проектиров	1.	1. Переход к plug &
ние развития	доступности	щики услуг,	Проектирова	play.
активов -	услуг и целей	подстанций	ние на основе	2. Снижение
определение	доставки.	и систем	данных ІР-	потребности в
местоположе	2. Снижение	распределен	протоколов,	рабочей силе
ния, условий	издержек	ия	чертежи на	
и требований	обслуживания и	электроэнерг	рабочем	
к замене или	снабжения.	ии	месте.	

zamonaviy ta'limning o'rni hamda rivojlanish omillari Ilm fan taraqqiyotida raqamli iqtisodiyot va

новому	3.		2.	
строительств	Эффективность		Виртуальное	
у активов	и экологичность		обсуждение	
Smart Grid			замыслов,	
			проектирован	
			ие в реальных	
			условиях	
Производств	1. Снижение	Внутренние	1.	1. Возможность
о, передача,	ограничений в	и внешние	Инфраструкт	легко
распределен	выработке	поставщики	ура для	подключиться к
ие и	электроэнергии.	распределен	присоединен	сети доступным
хранение	2. Доходность и	ной	ия	распределенным
электроэнерг	для внешних	генерации	внутренних	источникам
ии,	поставщиков		поставок к	энергии.
купленной у			сети	2. Простота и
распределен			энергоснабжа	экономичность
ной			ющих	поставок
генерации			компаний	электроэнергии
(distributed				
generation)				
Стратегическ	1. Доступность	Инвесторы,	Информация	1. Смещение
oe	и надежность за	топ-	о работе	акцента усилий со
планировани	счет	менеджмент	системы:	сбора данных на их
е и развитие	оптимизации		необходимая	анализ.
-	инвестиций.		В	2. Возможность
долгосрочны	2. Достижение		определенны	введения
й обзор нужд	ожиданий		й момент и	инновационного
потребителе	акционеров		точечная	системного
й и системы	относительно		(пообъектная	моделирования,
для принятия	уровня)	проведение
инвестицион	доходности			исследования
ных решений				снижения потерь.
				3. Оптимизация
				управления
				активами

Эта таблица иллюстрирует, как внедрение концепции Smart Grid приносит конкретные преимущества на различных уровнях цепочки создания ценности, обеспечивая как оперативные, так и стратегические выгоды для различных участников процесса.

В целом эффекты и выгоды для бизнеса, полученные благодаря внедрению концепции Smart Grid, могут принимать различные формы:

- более безопасный процесс производства продукции за счет повышения надежности электроснабжения;
 - повышение степени удовлетворенности потребителей;
- рост объемов продаж вследствие повышения уровня обслуживания потребителей;
- снижение производственных затрат вследствие сокращения простоев из-за сбоев работы энергетической системы;
- снижение уровня использования невозобновляемых источников энергии;
 - создание новых рабочих мест и потенциальный рост ВВП;
- возможность модернизировать энергетическую систему на основе интеграции энергетических активов в сфере генерации, передачи и распределения и аккумулирования электроэнергии.

Исследования, проведенные за рубежом, показывают, что многогранность эффектов от реализации концепции Smart Grid для всех заинтересованных сторон достигает максимума только в случае совокупной реализации всех свойств, методологии и элементов нового технологического базиса, отдельные компоненты, технологии и устройства рассматриваются как комплекс (система) взаимодействующих элементов, обеспечивающих требуемые функциональные свойства, выбор состава и уровня которых, в свою очередь, определяется пользователем.

Заключение

Реализация концепции Smart Grid представляет собой важный шаг к устойчивой эффективной созданию И энергетической системы, способствующей значительному снижению экологического воздействия и углеродных эмиссий. Внедрение технологий Smart Grid способствует энергопотреблением, оптимизации управления интеграции возобновляемых источников энергии, улучшению энергоэффективности и снижению эксплуатационных затрат, ОТР приносит значительные экологические и экономические выгоды. Важным аспектом является также повышение качества обслуживания потребителей, создание новых рабочих и стимулирование экономического роста. Применение технологий способствует не только достижению экологической устойчивости, но и повышает надежность и безопасность энергетических систем. обеспечивая долгосрочную устойчивость И развитие энергетической инфраструктуры. В целом, комплексное внедрение технологий Smart Grid предоставляет множество преимуществ, охватывающих как операционные, так и стратегические цели для всех участников энергетической цепочки

Литература

- 1. Modelling and research of harmonic components of current and voltage in electric nets / Ye. Borisova, N. Amurova, F. Kodirov, S. Abdullayeva // Universum: технические науки. 2022. No. 2-7(95). P. 63-67. DOI 10.32743/UniTech.2022.95.2.13134. EDN ASWAXJ.
- 2. Амурова Н. Ю. МОДЕЛИРОВАНИЕ ЭНЕРГОСБЕРЕГАЮЩИХ СИСТЕМ НА БАЗЕ SMART GRID //ББК 22.3 A 43. 2019. С. 17.
- 3. Амурова, Н. Ю. Тенденции оценки энергоснабжения в Узбекистане с применением ВИЭ на основе концепции Smart Grid / Н. Ю. Амурова // Высшая школа. – 2017. – № 4. – С. 90-91. – EDN XYEKTT.

- 4. Амурова Наталья Юрьевна. (2024). ASSESSING THE EFFECTIVENESS OF SOLAR PANELS IN URBANIZED AREAS: AN ANALYSIS OF BENEFITS AND CHALLENGES. Web of Discoveries: Journal of Analysis and Inventions, 2(3), 115–120. Retrieved from https://webofjournals.com/index.php/3/article/view/1043
- 5. Yurievna A. N. A MODEL FOR THE FORMATION OF PROFESSIONAL COMPETENCE OF SPECIALISTS IN ENERGY AND POWER SUPPLY IN THE FIELD OF INFORMATION TECHNOLOGY BASED ON DESIGN AND CREATIVE TRAINING //International Journal of Education, Social Science & Humanities. FARS Publishers. − 2023. − T. 11. − №. 3. − C. 71-77.

