О КОРРЕКТНОЙ РАЗРЕШИМОСТИ КРАЕВЫХ ЗАДАЧ ДЛЯ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

А.Х. Мукумов

Экономико-педагогический университет, Карши, Узбекистан asqarmuqumov@gmail.com

Аннотация: В статье с использованием свойств дробных степеней дифференциальных операторов исследуются обобщенные и слабые решения краевой задачи для гиперболических уравнений.

Ключевые слова: эллиптический дифференциальный оператор, обобщенное решение, слабое решение, положительный оператор, полугруппа.

В настоящей работе исследуются краевые задачи для уравнения

$$\frac{d^2u(t)}{dt^2} = Hu(t), \quad 0 \le t \le T \le \infty,$$

(1)

где H(x, D)- эллиптический дифференциальный оператор второго порядка вида

$$H(x, D) = -\Delta + q(x)$$
.

(2)

Здесь функция q(x) действительнозначная функция действительных переменных допускается особенность вида

$$|D^{\alpha}q(x)| \le \frac{C}{|x|^{1+|\alpha|+\tau}}, \quad 0 \le |\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n \le n, \quad 0 < \tau < 1.$$

(3)

Определение 1. Функция u(t) называется ослабленным решением уравнения (1), если: 1) она непрерывна и имеет непрерывную первую производную на отрезке [0,T] и вторую производную на (0,T); 2) ее значения принадлежат D(H) при 0 < t < T, а функция $H^{\frac{1}{2}}u(t)$ непрерывна на всем отрезке

Ta'limning zamonaviy transformatsiyasi

 $0 \le t \le T$; 3) u(t) удовлетворяет уравнению (1) в интервале (0, T).

Определение 2. Функция u(t) называется обобщенным решением уравнения (1), если: 1) она непрерывна на [0,T], имеет непрерывную вторую производную на (0,T), а функция $A^{-\frac{1}{2}}u(t)$ имеет непрерывную первую производную на [0,T]; 2) значения функции u(t) (0 < t < t) принадлежат D(H) и 3) она удовлетворяет уравнению (1) в интервале (0,T).

Определение 3. Будем говорить, что оператор A, действующий в комплексном банаховом пространстве E, нормально позитивен, если его область определения D(A) плотна в E и если при всех $t \ge 0$ существуют определенные на всем E ограниченные операторы $(A+tI)^{-1}$, причем

$$\|(A+tI)^{-1}\|_{L_p(R^n)} \le \frac{C}{1+t} \quad (t \ge 0).$$

(4)

Если оператор A позитивный, тогда дробная степень этого оператор определяется по формуле (см. [7])

$$A^{\alpha}x = \frac{\sin \pi\alpha}{\pi} \cdot \frac{n!}{\alpha(\alpha - 1)(\alpha - 2) \cdot \dots \cdot (\alpha - n + 1)} \int_{0}^{\infty} t^{\alpha} (tI + A)^{-n - 1} A^{n}x dt, \ (x \in D(A^{n}))$$

. (5)

Определение 4. Семейство ограниченных линейных операторов V(t), зависящих от параметра t (0 < t < ∞) называется полугруппой, если

$$V(t_1 + t_2) = V(t_1)V(t_2)$$
 $(0 < t_1, t_2 < \infty)$.

Определение 5. Полугруппа V(t) принадлежит классу C_0 , если она сильно непрерывна при t>0 и удовлетворяет условию $\lim_{t\to +0} V(t)x=x$ при любом $x\in E$.

В работе получены следующее основные результаты.

Теорема 1. Пусть 1 . Тогда

$$\|(H+tI)^{-1}\|_{L_p(R^n)} \le \frac{C}{1+t} \quad (t \ge 0)$$

(6)

Ta'limning zamonaviy transformatsiyasi

Теорема 2. Пусть $1 . Тогда операторы, <math>H^{\alpha}$ определенные формулами (5), образует сильно непрерывную полугруппу ограниченных операторов.

Отметим, что $A^{\frac{1}{2}}$ является производящим оператором аналитической полугруппу V(t), удовлетворяющей C_0 -условию. Если $z_0, W_T \in D(A^{\frac{1}{2}})$, то функция

$$u(t) = V(t)z_0 + V(T - t)W_T$$

(7)

является ослабленным решением уравнения (1).

Теорема 3. Всякое обобщенное решение уравнения (1) имеет вид (7), и наоборот, функция (7) является обобщенным решением уравнения (1) при любых $z_0, W_T \in D(A^{\frac{1}{2}})$. Для того чтобы обобщенное решение (7) было ослабленным, необходимо и достаточно, чтобы $z_0, W_T \in D(A^{\frac{1}{2}})$. Все обобщенные решения уравнения (1) являются аналитическими функциями от t при 0 < t < T.

ЛИТЕРАТУРА

- 1. Ильин В. А. Ядра дробного порядка// Мат. сб. 1957. Т.41. № 4. С. 459-480.
- 2. Алимов Ш. А. Дробные степени эллиптических операторов и изоморфизм классов дифференцируемых функций // Дифференциальные уравнения. -1972. Т. 8, № 9. -С. 1609-1626.
- 3. Красносельский М. А., Пустылник Е. И. Использование дробных степеней операторов при изучении рядов Фурье по собственным функциям дифференциальных операторов // ДАН. 1958. Т.122. № 6. С. 459-480.
- 4. Костин В.А., Небольсина М.Н. О корректной разрешимости краевых задач для уравнения второго порядка// ДАН. 2009. Т.428. № 1. С. 20-22.

Ta'limning zamonaviy transformatsiyasi

- 5. Красносельский М.А., Забрейко П.П., Пустылник П.Е., Соболевский П.Е. Интегральные операторы в пространствах суммируемых функций. М.: Наука, 1966. 500 с.
- 6. Muqumov A. H. IKKINCHI TARTIBLI DIFFERENSIAL TENGLAMA UCHUN QOʻYILGAN CHEGARAVIY MASALANING KORREKT YECHILISHI //World scientific research journal. − 2023. − T. 22. − №. 2. − C. 77-80.
- 7. Д.К.Салаев Х.Х.Имомназаров, А.Э.Холмуродов, А.Х.Мукумов Международная научно-практическая конференция «Рахматулинские чтения» 2023. Стр 61
- 8. Мукимов А.Х. Имомназаров Х.Х. Одномерная обратная задача определения источника из системы хопфа 2022 QarDU xabarlari Том 3 1 Стр 14