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Abstract: SM4 is extensively utilized in WLAN WAPI resource-constrained 

devices. This study introduces an 8-bit iteration structure for SM4 at an ultra-low 

cost, where key expansion and encryption alternate with only one S-Box. 

Additionally, to reduce area usage, an on-the-fly key expansion mechanism is 

employed to reserve memory for round keys, and constants keys are dynamically 

generated by an equation rather than being read from a large look-up table. The 

ASIC hardware implementation results indicate that our design has a gate count 

of only 2.47 K, achieving an approximately 16.0% reduction in area compared to 

recent works. 
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Introduction 

SM4 is a block cipher designed to produce a 128-bit output from a 128-bit 

input and a 128-bit key through 32 non-linear rounds. Its structure is succinct, with 

each round involving a limited number of XOR operations, a non-linear 

substitution, and a linear substitution. Both encryption and decryption follow the 

same structure, with the only difference being the reversal of the round key order 

for decryption. The key expansion process shares a similar structure with 

encryption and utilizes the same non-linear substitution. This simplicity and 

similarity contribute to the ease of implementing SM4. 

Several implementations of the SM4 algorithm exist, each optimized for 

specific purposes. One approach involves enhancing throughput through the use of 

pipeline structures. For instance, a swift implementation on smart cards partially 
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unrolls the iteration loops from 32 rounds to 8 rounds [88]. Many works adopt a 

strategy of implementing key expansion and encryption separately to enhance 

parallelism and fully unroll 32 rounds [89–92]. This enables the simultaneous 

processing of 32 data blocks and the generation of a result every cycle. However, 

this high throughput is achieved by replicating S-Box and other logics, leading to 

substantial hardware resource consumption. 

The alternative approach is to minimize hardware costs using iteration 

structures [90–93]. In this method, only one data block is processed at a time, and 

the output is produced after 32 clock cycles. Techniques such as employing small 

data width, reducing the number of S-Box instances, and implementing a 

lightweight key expansion mechanism have been proposed to create compact AES 

designs [94–96]. Given that AES is a representative block cipher, similar methods 

can be adapted for SM4. For instance, a design strategy involves sharing the 

iteration structure between key expansion and encryption, resulting in a halved 

number of S-Box instances [92]. An ultra-compact SM4 design, referred to as 

"UCSM4," employs an 8-bit iteration structure, utilizing a single S-Box through 

resource multiplexing and rescheduling constant keys [93]. The key expansion 

mechanisms can be categorized into two types: pre-computing and storing all round 

keys or providing round keys on-the-fly, known as on-the-fly key expansion [94]. 

The former is prevalent in previous works, including UCSM4, due to its high 

performance and low energy consumption when input keys remain constant. The 

latter performs key expansion for each data block but eliminates the need to store 

round keys, resulting in significant hardware resource savings. In the context of 

embedded systems, prioritizing low-cost considerations is crucial for designs on 

resource-restricted devices. However, previous works have achieved only limited 

reductions in hardware consumption, as low cost was not their primary focus. Our 

objective in this work is to minimize the area. In  [97] proposes a new hardware 

implementation of SM4 at ultra-low cost (ULSM4). Like UCSM4, the iteration 

structure of ULSM4 takes 8-bit data width as process unit and supports the 

computation of key expansion and encryption. The main contribution is that we 

http://www.pedagoglar.uz/


 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             6-to’plam 3-son aprel 2024 

115 

first utilized on-the-fly key expansion and generated constant keys dynamically by 

equation on 8-bit iteration structure of SM4, which minimizes the area. 

This work introduces a novel hardware implementation of SM4, termed 

ultra-low-cost SM4 (ULSM4_2). Similar to UCSM4, the iteration structure of 

ULSM4 adopts an 8-bit data width as the process unit and facilitates key expansion 

and encryption computations. The primary innovation lies in the utilization of on-

the-fly key expansion and dynamic generation of constant keys through equations 

on the 8-bit iteration structure of SM4, leading to significant area reduction. A 

comparison between ULSM4_2 and the latest work UCSM4 on the ASIC platform, 

based on logic synthesis results, reveals that ULSM4 occupies merely 2.51 K gates 

at SMIC18 technology, representing an 18.0% reduction compared to UCSM4. 

These area minimization methods demonstrate their effectiveness, positioning 

ULSM4 as a more suitable choice for resource-restricted devices. 

Earlier studies on low-cost implementations of SM4 have demonstrated that 

employing a small-width processing unit and resource reutilization techniques can 

result in compact SM4 implementations. Consequently, our ULSM4 design adopts 

an 8-bit processing unit and incorporates only one S-Box, with the iteration 

structure supporting both key expansion and encryption computations. To further 

reduce hardware costs, ULSM4_2 utilizes an dynamic key expansion approach to 

reserve extensive memory for generated round keys. Additionally, 8-bit constant 

keys are dynamically generated through an equation, eliminating the need for a 

large look-up table. As a result, ULSM4_2 is implemented at an ultra-low cost. 

Methodology 

The conventional SM4 algorithm is defined in 32 bits. In the subsequent 

sections, uppercase variables denote 32-bit vectors, while lowercase variables 

represent 8-bit vectors. Table 3.4 provides definitions for certain terminologies. 

Table 3.4.  

Main transformations used in the SM4 algorithm transformation 

Symbol Description 

S () Substitution box with 8-bit data width 
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⨁ Bitwise XOR 

<<< n Circular shift left of a 32-bit vector by n bits 
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Figure 3.2. Block diagram of ULSM4_2 

The proposed design facilitates both encryption and decryption in Electric 

Code Block (ECB) mode, as depicted in Figure 3.2. Input interfaces X0, X1, X2, 

X3 and K0, K1, K2, K3 represent data and key, respectively, while Y0, Y1, Y2, 

Y3 serve as the output interface for data. The bus width for both input and output 

interfaces is 8 bits. The start signal activates computation, and the control flag 

determines whether encryption or decryption should be performed. Upon the high 

signal of "done," the results are returned through the output interface. ULSM4_2 

comprises a control module and a data path module. The control module manages 

the scheduling of the data path module for key expansion or encryption, 

maintaining register updates through signals k_s and d_s. The data path module 

updates 8 bits at a time and requires four cycles for one round of functions F and 

F’. With on-the-fly key expansion and a shared iteration structure for key expansion 

and encryption, the data path module includes two 128-bit register sets for storing 

intermediate data: XR = {XR0, XR1, XR2, XR3} for encryption and KR = {KR0, 
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KR1, KR2, KR3} for key expansion. 

ULSM4_2 employs a mechanism for on-the-fly key expansion, generating 

round keys dynamically. As key expansion is necessary even when the input keys 

remain constant, ULSM4_2 integrates key expansion with the 

encryption/decryption process. In encryption, the procedure involves 32 iterations, 

encompassing one round for key expansion and one round for encryption. To 

ensure the round key is prepared for the encryption round within the same iteration, 

the key expansion round is executed first. The KR and XR registers store 

intermediate results and are updated upon completion of the corresponding round. 

The encryption process is outlined in Algorithm 1. 

Algorithm 1: On-the-fly Key Expansion for Encryption process 

 Input: Plain text (X0, X1, X2, X3) and Key (K0, K1, K2, K3) 

Output: Cipher text (Y0, Y1, Y2, Y3) 

1 (KR0, KR1, KR2, KR3)= (K0, K1, K2, K3); 

2 (XR0, XR1, XR2, XR3) = (X0, X1, X2, X3); 

3 for i=0 to 31 do 

4 RKi=F`(KR0, KR1, KR2, KR3, CKi); 

5 (KR0, KR1, KR2, KR3)=(KR1, KR2, KR3, RKi); 

6 RXi=F`(XR0, XR1, XR2, XR3, KR3); 

7 (XR0, XR1, XR2, XR3)=(XR1, XR2, XR3, RXi); 

8 (Y0, Y1, Y2, Y3) = (XR3, XR2, XR1, XR0); 

9 return (Y0, Y1, Y2, Y3); 

 

For decryption, the ordering of round keys is reversed. On-the-fly key 

expansion for decryption involves three steps. In the first step, the final round key 

is obtained by solely performing key expansion. The second step entails reversing 

the KR register to ensure the correct key order. Finally, the key expansion and 

decryption are combined into a single process. This process comprises 32 

iterations, with the round count decreasing from 31 to 0. Unlike encryption, in 

decryption, the round for decryption is executed first, and the round for key 
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expansion generates the round key for the subsequent iteration. In the last four 

iterations, the round keys are already available in the KR registers, and a shift left 

operation is sufficient to retrieve them, thus the round for key expansion is omitted. 

The decryption process is outlined in Algorithm 2. 

Algorithm 2: On-the-fly Key Expansion for Decryption process 

 Input: Cipher text (Y0, Y1, Y2, Y3) and Key (K0, K1, K2, K3) 

Output: Plain text (X0, X1, X2, X3) 

1 (KR0, KR1, KR2, KR3)= (K0, K1, K2, K3); 

2 (XR0, XR1, XR2, XR3) = (Y0, Y1, Y2, Y3) 

3 for i=0 to 31 do 

4 RKi=F`(KR0, KR1, KR2, KR3, CKi); 

5 (KR0, KR1, KR2, KR3)=(KR1, KR2, KR3, RKi); 

 (KR0, KR1, KR2, KR3)=(KR3, KR2, KR1, KR0); 

 for i=0 to 31 do 

6 RXi=F`(XR0, XR1, XR2, XR3, KR0); 

7 (XR0, XR1, XR2, XR3)=(XR1, XR2, XR3, RXi); 

 if  i >= 4  then 

 RKi-4=F`(KR0, KR1, KR2, KR3, CKi); 

 (KR0, KR1, KR2, KR3)=(KR1, KR2, KR3, RKi-4); 

 else 

 (KR0, KR1, KR2, KR3)=(KR1, KR2, KR3, 0); 

8 (X0, X1, X2, X3) = (XR3, XR2, XR1, XR0); 

9 return (X0, X1, X2, X3); 

 

Hence, the on-the-fly key expansion mechanism utilizes only 128-bit 

registers to produce the round keys, eliminating the need to store all round keys in 

a 32x32-bit memory and significantly conserving hardware resources. 

The iteration structure of ULSM4_2 is illustrated in Figure 2. This 

architecture is 8-bit, with the exception of the linear substitution, which involves a 

32-bit circular shift left and cannot be broken down into byte operations. XR and 

http://www.pedagoglar.uz/


 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             6-to’plam 3-son aprel 2024 

119 

KR registers function as shift registers, shifting 8 bits to the left per clock cycle. 

Only the rightmost byte updates through an 8-bit multiplexer controlled by d_s or 

k_s and is selected for 8-bit XOR operations. Register BR serves as a shift left 

register, storing the output of the S-Box in the first three cycles of a round and is 

repurposed to store the lower 24 bits of the linear substitution's output in the last 

cycle. The output interface is 8-bit, and the results require four cycles to return. For 

encryption, the round key rk is derived from register KR3, whereas for decryption, 

it is sourced from register KR0. 

d_s

k_s

ck

rk

S-box

BondingSplit

24-bit8-bit

<<<10 <<<18<<<2 <<<24 <<<13 <<<23

rk/rx 8-bit

32-bit

XR0 KR0 XR1 KR1 XR2 KR2 XR3 KR3

 

Figure3.3. Iteration structure of ULSM4_2 

When the iteration structure is designated for key expansion, constant keys 

become necessary. In previous approaches, these constant keys were implemented 

using a lookup table (LUT) with a size of 32x32 bits, which was deemed too 

resource-intensive. In our design, we opt to dynamically generate the constant keys 

through an equation, and only one equation is implemented due to the 8-bit process 
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unit. The equation in hardware implementation is: 

𝑐𝑘,𝑗 = (4 ∗ 𝑖 + 𝑗) ∗ 7 𝑚𝑜𝑑 256 = ((4 ∗ 𝑖) ⋘ 3 − 4 ∗ 𝑖 − 𝑗) 𝑚𝑜𝑑 256 

Where 𝑖 = 0,1,2, … ,31 represents the round count, and 𝑗 = 0,1,2,4 is the 

cycle count in a round. 

The addition and shift left operations in the equation can be circumvented by 

direct wiring, necessitating only one subtraction. 

Results 

We implemented ULSM4_2 on an ASIC platform and conducted logic 

synthesis for a typical case using Synopsys Design Compiler. The frequency in the 

synthesis script is configured to 185 MHz, considering UCSM4  [93] as the 

baseline. 

UCSM4 features an 8-bit iteration structure with a single S-Box shared for 

key expansion and encryption. The round keys are pre-computed and stored in 

memory, and constant keys are implemented using a Look-Up Table (LUT). An 

additional design, named OTFSM4, is implemented based on UCSM4, applying 

on-the-fly key expansion. In OTFSM4, constant keys are also implemented using 

LUT, but they are not rescheduled. Therefore, the key expansion mechanism is the 

primary distinction between UCSM4 and OTFSM4. The synthesis results are 

presented in Table3.4. 

Table 3.4.  

Synthesis outcomes for logic @ SMIC18 and 185 MHz 

Item Area/ µm² 

 

Gate count 

Combinational Non-

combinational 

Total 

UCSM4 [93] 19,772 10,797 30,569 3060 

OTFSM4 [97] 11,794 13,513 25,308 2530 

ULSM4 [97] 11,557 13,496 25,053 2510 

OTFSM4_2 

[this work] 

11,744 13,484 25,228 2490 
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ULSM4_2 [this 

work] 

11,512 13,444 24,956 2470 

SM4_Mix 15,494 16,744 32,238 2840 

SM4_Mix (with 

Lut_table) 

12,356 14,452 26,808 2560 

 

In OTFSM4_2, the overall area is 25,228 µm², comprising 11,744 µm² for 

combinational logics and 13,484 µm² for non-combinational logics. UCSM4 

serializes key expansion and encryption, while OTFSM4_2 processes them 

sequentially. Consequently, OTFSM4_2 has 256 bits of registers for immediate 

results, compared to the baseline's 128 bits. This difference explains why the non-

combinational logics area in OTFSM4 exceeds that of UCSM4. However, the on-

the-fly key expansion approach in OTFSM4 reduces the memory requirement for 

round keys, resulting in a smaller area for combinational logics. The hardware 

footprint of OTFSM4_2 is 64.4 % of that of UCSM4. 

The primary distinction between OTFSM4 and ULSM4_2 lies in the 

generation of constant keys. In ULSM4_2, constant keys are produced through an 

equation. This alteration does not impact the non-combinational logic area 

significantly in ULSM4_2, which remains nearly the same as in OTFSM4. 

However, the combinational logic area in ULSM4_2 decreases from 11,512 µm² 

to 11,444 µm². The equation for generating an 8-bit constant key involves an 8-bit 

subtraction, whereas a 32x32-bit LUT, used in OTFSM4, requires numerous 

multiplexers to select the 8-bit constant key. Therefore, employing an equation for 

8-bit constant key generation proves to be more hardware-efficient. The total area 

of ULSM4_2 is 24,956 µm², representing a 1.0% reduction compared to 

OTFSM4_2 and an 16.0% decrease compared to UCSM4. This outcome 

demonstrates that ULSM4_2 exhibits a more frugal utilization of hardware 

resources. 

In SM4_Mix, the overall area is 32,238 µm², comprising 15,494 µm² for 

combinational logics and 16,744 µm² for non-combinational logics. In SM4_Mix 
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(with Lut_table), the overall area is 26,808 µm², comprising 12,356 µm² for 

combinational logics and 14,452 µm² for non-combinational logics. 

Table 3.5. 

Comparison of throughput 

Item Mode Key Cycles Frequency/MHz Throughput/Mbps 

UCSM4 [93] 

Encryption Changed 256 185 92.5 

Decryption Changed 256 185 92.5 

Encryption Unchanged 128 185 185 

Decryption Unchanged 128 185 185 

ULSM4 [97] 
Encryption Not care 256 435 217.5 

Decryption Not care 372 435 149.7 

ULSM4_2 

[this work] 

Encryption Not care 256 435 225.4 

Decryption Not care 372 435 162.5 

SM4_Mix 
Encryption Not care 288 480 204.5 

Decryption Not care 404 480 134.7 

SM4_Mix 

(with 

Lut_table) 

Encryption Not care 256 435 225.4 

Decryption Not care 372 435 162.5 

Discussion 

We also conducted a comparison of ULSM4_2's throughput with UCSM4, 

SM4_Mix and SM4_Mix (with Lut_table) and the results are presented in Table 

3.5. Throughput is determined by the maximum frequency and the number of 

cycles required to complete the SM4 algorithm. Since the memory for storing all 

round keys is on the critical path, the maximum frequency of UCSM4 is 

constrained to 185 MHz UCSM4 requires 256 cycles to complete encryption or 

decryption when the input keys are altered and 128 cycles when the input keys 

remain unchanged. Consequently, the maximum throughput of UCSM4 is 185 

MHz. 

In contrast, ULSM4_2 boasts a superior maximum frequency of 435 MHz, 

independent of the state of input keys. It necessitates 256 cycles to finalize an 
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encryption and 372 cycles to complete a decryption. This results in a throughput of 

225.4 Mbps for encryption and 162.5 Mbps for decryption. Therefore, ULSM4_2 

exhibits a higher maximum throughput compared to UCSM4. 

Conclusion 

In this article, we introduced ULSM4_2, an iteration structure designed for 

SM4 with a focus on cost-effectiveness. To fully leverage hardware resources and 

streamline logic complexity, ULSM4_2 adopts an 8-bit data width as the process 

unit, featuring a single S-Box shared for both key expansion and encryption. To 

minimize the area, we implemented on-the-fly key expansion, reserving memory 

for generated round keys, and employed a dynamic equation to generate 8-bit 

constant keys. Synthesis results indicate that ULSM4_2 reduces the area by 16.0% 

compared to the latest UCSM4 approach (15.1% reduction for on-the-fly key 

expansion and 0.9% for generating constant keys by equation). Thus, ULSM4_2 

demonstrates enhanced efficiency in resource utilization, making it well-suited for 

providing data protection in resource-restricted applications. 

In contrast, SM4_Mix boasts a superior maximum frequency of 480 MHz, 

independent of the state of input keys. It necessitates 288 cycles to finalize an 

encryption and 404 cycles to complete a decryption. This results in a throughput of 

204.5 Mbps for encryption and 134.7 Mbps for decryption. Therefore, SM4_Mix 

(with Lut_table) exhibits a higher maximum throughput (225.4 Mbps for 

encryption and 162.5 Mbps for decryption) compared to SM4_Mix. 
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