

"¹¹C YADROSI STRUKTURASINI A+A+³HE KLASTER MODELIDA TADQIQ ETISH "

Rasulov Hafiz Habib o'g'li O'zbekiston Milliy Unversiteti II bosqich magistranti <u>khafizrasulov00@gmail.com</u>

Annotatsiya ¹¹C yadrosining strukturasi alfa klaster modelini tahlil qilish uchun juda muhim obyekt hisoblanadi. Ma'lumki, ¹¹C yadrosi strukturasi bor-proton termoyadro reaktor muhitida ¹⁰B(p, α)⁷Be reaktsiyasi uchun muhim rol o'ynaydi. Yoqori aniqlikdagi Gauss bazisiga qurilgan variatsion metod yordamida ¹¹C yadrosining asosiy va uyg'ongan holatlari spektri va to'lqin funktsiyalari hisoblanadi. Realistik α - α va α -³He potensiallar ishlatiladi va sistemaning to'lqin funktsiyasi 3-jism funktsional fazosidagi Pauli ta'qiqlangan holatlaridan Ortogonallashtiruvchi psevdopotentsiallar usuli yordamida tozalanadi.

Kalit soʻzlar: Gamilton operatori, psevdopotensiallar, Gauss bazisidagi variatsion metod, Pauli taqiqlangan holatlari, kvant fazaviy oʻtishlar.

Ushbu mavzuda biz 2α +³He strukturasini turli atom va yadro tizimlarining koʻplab strukturaviy hisob-kitoblarida muvaffaqiyatli qoʻllanilgan, yuqori aniqlikdagi variatsion usulga asoslangan, yengil yadrolar uchun multiklaster dinamik modeli doirasida $\alpha + \alpha$ sistema uchun BFW potensialidan va α +³He sistema uchun SBB hamda Pomeransev potensiallaridan foydalangan holda oʻrganamiz. Taqiqlangan holatlarni bartaraf qilish uchun, ortogonal psevdopotensiallar (OPP) usuli qoʻllaniladi, bu nisbiy harakatning toʻliq fazosida ishlash imkonini beradi. Bizning ishimizning asosiy xususiyati ⁹Be yadrosining asosiy va eng quyi uygʻongan holatlari uchun ortogonalizatsiya protsedurasining yaqinlashuvini tavsiflashdir. OPP usulidan foydalanganda, proyeksiya doimiysi λ ning oshishi bilan 2α +³He sistema energiyasining biror qiymatga yaqinlashuvini tekshirish mumkin. Tanlangan α + α va α +³He potensiallar bilan aniqlangan taqiqlangan holatlarni tavsiflash orqali ham yaqinlashishni tekshiramiz.

Ustozlar uchun

Alfa-alfa oʻzaro ta'sirni tavsiflovchi ikkita muqobil lokal potensialli modellar mavjud. Ali va Bodmer (AB) tomonidan taklif qilingan birinchi potensial kuchli itaruvchi yadroni oʻz ichiga oladi. Ikkinchi chuqur potensial model bu Bak-Fridrix-Witli (BFW) tomonidan taklif qilingan boʻlib, u quyi S va D toʻlqinlarida uchta taqiqlangan holatga ega. Shunday qilib, bu muqobil modellar alfa-alfa oʻzaro ta'sirining Pauli taqiqlangan holatini tavsiflashda bir-biridan farq qiladi. Natijada, qobiq ekvivalent potensialining lokal modellari hali ham ⁸Be ning asosiy holati uchun turli xil toʻlqin funksiyalarini beradi: BFW potensiali tugun harakatini tasvirlaydi, AB potensiali esa mikroskopik jihatdan bu real xususiyatni tasvirlamaydi. ¹¹C yadrosining eng quyi holatlarini tavsiflash uchun biz Back Fridrix Witli potensiali ya'ni $\alpha+\alpha$ -oʻzaro ta'sir lokal potensialidan foydalanamiz.

$$V_i(r) = V_0 \exp(-\eta r^2)$$

Bunda $V_0 = -122.6225 \text{ MeV}, \eta = 0.22 \text{ fm}^{-2}$. Bu potensial $\alpha + \alpha$ - sochuvchi $\delta_L(E)$ ning L = 0, 2, 4 bilan 40 MeV energiyagacha boʻlgan tajriba fazalarini yaxshi tavsiflaydi. Bizning hisob-kitoblarimizda Kulon oʻzaro ta'siri potensiali quyidagicha olinadi:

$$V_{Coul}(r) = 4e^2 \operatorname{erf}(br)/r$$

Bu yerda $b=0.75 \ fm^{-1}$, bu eni 1/b boʻlgan Gauss shaklidagi α -zarrachaning zaryad taqsimoti. Bu hisoblashlarda $\hbar^2/m_a = 10.4469 \ MeV \ fm^2$ qiymatidan foydalanamiz. Bu potensial S toʻlqinda ikkita E₁=-72.6449 MeV va E₂=-25.6174 MeV energiyali Pauli taqiqlangan holatlarni va D toʻlqinda bitta E₃ = -21.9991 MeV energiyali taqiqlangan holatni oʻz ichiga oladi.

Taqiqlangan holat toʻlqin funksiyasi

$$\psi_{\lambda S_{0}j}(\vec{x}_{1}) = D_{j}N_{\lambda j}x_{1}^{\lambda}\exp\left(-\alpha_{\lambda j}x_{1}^{2}\right)Y_{\lambda S}^{JM}(\vec{x}_{1},\xi_{2},\xi_{3})$$
$$N_{j} = \left(\frac{2^{\lambda+2}\eta^{2\lambda+3}}{\pi^{\frac{1}{2}}[\lambda]!!}\right)^{\frac{1}{2}} \qquad \alpha_{J} = \frac{\eta^{2}}{2}, \quad \eta = \sqrt{2\alpha_{J}}$$

 $\alpha + \alpha$ tizimning S toʻlqindagi $E(0_1^+) = -72.6249 \, MeV$ energiyaga mos taqiqlangan holat toʻlqin funksiyaning parametrlari.

Ustozlar uchun

N⁰	α _J	D_j
1	0.256842	0.000231357
2	1.52988	-0.00208960
3	3.66143	0.158629
4	6.85176	0.708588
5	11.6544	0.156340
6	19.3060	-0.0039463
7	32.8383	-0.00084995
8	61.4515	0.000394936
9	147.070	-0.000057510
10	876.025	0.0000026570

 $\alpha + \alpha$ tizimning S to'lqindagi $E(0_2^+) = -25.6174 \, MeV$ energiyaga mos taqiqlangan holat to'lqin funksiyaning parametrlari.

N⁰	α_j	D_j
1	0.256842	0.00423400
2	1.52988	-0.268441
3	3.66143	-1.71393
4	6.85176	1.04817
5	11.6544	847572
6	19.3060	-0.0869361
7	32.8383	0.0184186
8	61.4515	-0.0026973
9	147.070	0.000231431
10	876.025	-0.0000082717

XULOSA

1. ¹¹C yadrosini asosiy holat spektrini 2α +³He modeli doirasida o'rgandik.

2. ¹¹C yadrosining 3 jism to'lqin funksiyasini Pauli taqiqlangan holatlardan tozalash uchun ortogonallashtiruvchi psevdopotensial (OPP) metodidan foydalandik.

3. ⁸Be yadrosining taqiqlangan holatlar energiyalarining qiymatlarini aniqladik.

4. Proeksiya doimiysi λ ning qiymati 0 dan boshlab oshib borganda quyi holat butunlay yo'qolib ketar ekan. λ ning qiymati 2000 MeVdan 3000 MeVga o'zgarganda sistemaning energiyasi bog'langan holatdan rezonans holatga o'zgarar ekan. Hamda 0.3828 MeV energiyali holat eng quyi holat bo'lib qolar ekan. Xuddi shunday vaziyat ¹²C yadrosida ham kuzatilgan. Demak sistema kuchli bog'langan fazadan kuchsiz

Ustozlar uchun

bogʻlangan fazaga oʻtar ekan va bu kvant faza oʻtishlari haqidagi gipotezaga olib kelar ekan.

Foydalanilgan adabiyotlar ro'yxati

1.В.Т.Ворончев,В.И.Кукулин,В.Н.Померанцев,Х.Д.Разиков, Г.Г.Рыжих «Изучение структуры и свойств ядер с А=9 в рамкахмультикластерной динамической модели 2α+n. 1994

2. B. Buck, H. Friedrich and C. Wheatley, *Nucl. Phys.* A **275** (1977), 246.

3. https://nucldata.tunl.duke.edu/